Virtual Reality in Medical Science

Satyaki Sinha
4 min readApr 19, 2022

(Technical Review)

Doctor using VR technology.

Medical education is changing. Simulation is increasingly becoming a cornerstone of clinical training and, though effective, is resource intensive. With increasing pressures on budgets and standardisation, virtual reality (VR) is emerging as a new method of delivering simulation. VR offers benefits for learners and educators, delivering cost-effective, repeatable, standardised clinical training on demand. A large body of evidence supports VR simulation in all industries, including healthcare. Though VR is not a panacea, it is a powerful educational tool for defined learning objectives and implementation is growing worldwide. The future of VR lies in its ongoing integration into curricula and with technological developments that allow shared simulated clinical experiences. This will facilitate quality interprofessional education at scale, independent of geography, and transform how we deliver education to the clinicians of the future.

The pace of change in medical practice is relentless. The complex needs of an ageing population, the range of treatment options available, the interprofessional nature of care and the complexity of healthcare systems themselves are vastly different today than they were 20 years ago.

As such, how we prepare future clinicians for practice has had to adapt. It is no longer a question of whether an individual can retain or access facts, but how they use them, evaluate them and apply them to patient care.

There is therefore a move to replace rote learning with more clinically relevant and practical teaching. Problem-based learning, communication skills training and simulation-based learning have all entered curricula. With the increasing drive to provide clinical learning experiences, and the inherent difficulties in doing so, simulation in particular has gained momentum as a method of delivering experiential learning.

Simulation is an educational technique that involves creating situations that replicate real life, letting a learner act as they would do in real life, then providing feedback and debrief on performance. Simulation is effective in many domains and has been found to be ‘superior to traditional clinical education, producing powerful educational interventions that yield immediate and lasting results.’1

However, while simulation is becoming central to healthcare education, it requires significantly more resources than
traditional education. At a time when healthcare systems and educational institutions globally are struggling with growing demands and limited budgets, additional resources are hard to come by.

Fortunately, there has been a recent dramatic expansion in the ways in which we can deliver medical education. This has not only been through the internet and mobile devices, but through immersive technologies. These technologies — including augmented reality (AR) and virtual reality (VR) — can transform how we deliver educational experiences.

VR in particular has been adopted across medical and nursing fields. VR involves the user putting on a VR headset to become completely immersed in an interactive virtual environment. When used with appropriate educational software, this allows the user to learn from experience in the virtual world. This paper outlines what VR is; its strengths, its weaknesses, the evidence behind it, its use in practice and where the future lies.

Case studies of universities using virtual reality simulation.

  • University of Northampton

The University of Northampton have created a virtual reality (VR) simulation suite for nursing students, with four sets of VR hardware and a large screen integrated in a physical simulation ward. This screen allows projection of what the learner is experiencing in VR onto the screen for group teaching. In small groups, learners take turns leading VR scenarios with real-time peer contribution, before doing a group debrief like physical simulation. This integration of VR within the simulation space ensures innovation complements existing educational structures and allows learners to practice simulation at scale while maintaining the value of peer support.

Nurses require people skills, soft skills and clinical skills, and we needed to be able to train future nurses in a balanced way that caters to each of these skill sets. Technological developments are allowing us to do this in a safe and supportive learning environment, focusing on immediate feedback and the opportunity to repeat the scenarios and improve over time. VR simulation allows us to integrate theory into practice in a really meaningful manner, allowing students to progress throughout their academic careers.

  • University of Oxford

The University of Oxford are using VR simulation for their medical students and doctors working in the John Radcliffe Hospital. Rather than integrating VR in a defined simulation space, the faculty implemented mobile VR trolleys to transport their equipment wherever it is needed. Peer learning has been facilitated by groups of ‘super-users’ who introduce VR-naive students to the system. As a result of this, no faculty are required for use other than when they choose to review student progress or if the students approach them with clinical issues encountered in VR.

The faculty explained:

Simulation is a vital part of medical education and students just don’t get to do it enough. Embedding VR simulation into what we do has enabled us to give a far greater number of learners access to simulation in a shorter space of time, and lets them do it as often as they like to transfer their knowledge to practice. It’s encouraging to see how quickly our students have adopted the technology and I’m excited to see how they progress clinically as they use it more and more.

Summary

VR is already transforming medical education. It is helping to free learning from the classroom, allowing learners to apply their knowledge to practice and learn from mistakes. It focuses on improving competencies and places the emphasis on autonomous, blended learning, which is expected from the learners of today.

As VR continues to be implemented and integrated within curricula, its use will become mainstream. The ability for multiple learners to take part in truly interprofessional, completely life-like simulation which is not bound by geography, is set to change how we conduct medical and interprofessional education beyond recognition.

--

--